Lyapunov Abstractions for Inevitability of Hybrid Systems

Parasara Sridhar Duggirala & Sayan Mitra
{duggira3, mitras}@illinois.edu
University of Illinois at Urbana-Champaign

SRI International, Menlo Park
June 2012
Inevitability Property

- **Definition.** A set of states S of system A is inevitable if every execution starting from arbitrary state reaches S in bounded time.

- **Examples:**
 - Autonomous vehicle reaches destination
 - Routing protocol recovers from failures
 - Traffic control protocol **does not** deadlock

}
Inevitability of Hybrid Systems

If S is inevitable for each of the individual dynamical subsystems, S may not be inevitable for combined hybrid system

Goal: Design algorithm for verifying inevitability of HA. Given

(a) HA A and a set S, it should either produce
(b) a proof that S is inevitable OR
(c) a counter-example behavior of A that does not ever reach S

What is a proof?
What is a counter-example?
Hybrid Automata (HA)

- $A = <X, L, Q_0, D, T>$
- L: set of locations
- X: set of continuous variables $\{x_1, x_2, v_1, v_2\}$
- Q: state space $= \mathbb{R}^4 \times L$
- $D \subseteq Q \times Q$ discrete transitions
- T: trajectories each $\tau \in T, \tau : [0, t] \rightarrow Q$
- over which continuous variables flow according to $\dot{x} = f_i(x)$
 - Rectangular HA: $\dot{x} \in [a_i, b_i]$
 - Linear HA: $\dot{x} = A_i x + b_i$
- An execution of A is a sequence $\tau_0, \tau_1, \tau_2, ...$
- Assume A is non-blocking, i.e., if time diverges along every execution
Outline

• Background ✓
• Hybrid Step Relation
• Well-Foundedness and Inevitability
• Relational Abstractions
• Conclusions
Termination and Inevitability

- Similarity to Program Termination (Halting state inevitability)
- Well-founded relations
- Dense time model vs Well-foundedness
- Hybrid Step Relation

Let's talk about Termination
Termination of Programs: An Example

integer i,j; /* initially arbitrary */
while (|i| > 1 or |j| > 1)
 { i = i + j; j = j - 1; }

- Program terminates if transition relation T_A is well-founded
- Transition relation
 - T_A: If ($|i| > 1$ OR $|j| > 1$) then ($i' = i+j$ AND $j' = j-1$)
 - For above program T_A is not well-founded
 - $(4,2) \rightarrow (6,1) \rightarrow (7,0) \rightarrow (7,-1) \rightarrow (6,-2) \rightarrow (4,-3) \ldots$
 - $(-4,2) \rightarrow (-2,1) \rightarrow (-1,1)$ stops
 - But, $I \land T_A$ is, where $I \equiv |i + j(j+1)/2| \leq 1 \land j \leq 1$

- Diagram:

Does not have infinite chains $q_0 q_1 \ldots$ where $q_i T_A q_{i+1}$
$T_1 = \{ <q, q'> | q' = q + 1 \}$
$T_2 = \{ <q, q'> | q' = q + 1 \land q' < I \}$
Definition. \(T_A \subseteq Q \times Q \) hybrid step relation (HSR)

\((q, q') \in T_A \iff \) there exists \(q'' \) such that there exists a trajectory from \(q \) to \(q'' \) and a transition from \(q'' \) to \(q' \)

Example:

\[
\begin{align*}
\dot{x} &= 1 \\
Inv: & \quad x \in [0,5] \\
\text{Guard:} & \quad x \in [3,5] \\
\text{Reset} & \quad x' = x + 1
\end{align*}
\]

\[
\begin{align*}
0 \leq x \leq 5 \AND & \quad \exists t : 3 \leq x + t \leq 5 \AND \\
& \quad x + t + 1 = x' \\
\text{After quantifier elimination} & \quad 0 \leq x \leq 5 \AND \\
& \quad x + 1 \leq x' \AND \\
& \quad 4 \leq x' \leq 6
\end{align*}
\]
Is it possible to perform this self-loop infinitely many times?

\[\dot{x} = 1 \]
\[x \in [0,5] \]

Guard:
\[x \in [3,5] \]

Reset
\[x' = x + 1 \]

- (0,4) (4,5) (5,6) stop
- All finite sequences

\[0 \leq x \leq 5 \text{ AND } x + 1 \leq x' \text{ AND } 4 \leq x' \leq 6 \]
Inevitability and Well-foundedness

Theorem 1. S is inevitable for A iff hybrid-step relation $T_{A/S}$ for A/S is **well-founded**

Definition: $A/S = \text{obtained by removing } S \text{ from } A$
- Remove transitions from S
- All trajectories stop at S
Proof Sketch

- **Theorem 1.** \(S \) is inevitable for \(A \) iff hybrid-step relation \(T_{A/S} \) for \(A/S \) is well-founded

- \((T_{A/S} \text{ Well-founded } \Rightarrow S \text{ is inevitable for } A)\)
 - If \(T_{A/S} \) is well founded then there are no infinite chains outside \(S \)
 - Every execution outside \(S \) has finitely many transitions
 - Since, finite duration elapses between transitions (local nonblocking), total time outside \(S \) is also finite \(\Rightarrow \) Since, \(A \) is non-blocking, \(S \) is inevitable

- \((S \text{ is inevitable for } A \Rightarrow T_{A/S} \text{ Well-founded})\)
 - Suppose there is an infinite decreasing chain \(q_0 q_1 \ldots \) in \(T_{A/S} \)
 - Chain corresponds to an execution \(\alpha \) with infinitely many transitions outside \(S \)
 - Time diverges in \(\alpha \) (nonZeno) outside \(S \), which contradicts inevitability of \(S \)
Hybrid Step Relations for Loops

Theorem 1. S is inevitable for A iff $T_{A/S} \subseteq R$, R is well-founded

Using [Podelski & Rybalchenko 2004]

Theorem 2. S is inevitable for A iff $T_{A/S}^+ \subseteq \bigcup_{i=1}^{n} R_i$, where $\{R_i\}$ is a collection of well-founded relations and $T_{A/S}^+$ is the transitive closure of $T_{A/S}$

- $(a,c) \in T_{A/S}^+$ iff $a T_{A/S} b_1 T_{A/S} b_2 T_{A/S} \ldots T_{A/S} c$
- $(q, q') \in T_{A/S}^+$ iff there is execution α: q to q'
- Need to show that every execution is well-founded
- Suffices to consider loops, i.e., executions starting and ending at the
Using Disjoint Union of Well-founded Relations

- For every loop O, find a well-founded relation R_i containing T_O
- Example, Rectangular HA:

 \[
 T_{\text{MLM}} = \{(x, y) \in [0, 100] \ AND \ x' \in [40, 50] \ AND \ y' \leq 10 \ AND \ x' - x \in [-25, -1] \ AND \ y' \geq y + 2\}
 \]
- T_{MLM} can be computed and
- Well-foundedness of T_{MLM} can be checked using linear functions over x, x', y, y' e.g. using Rankfinder

For Linear Dynamical Systems computing HSR involves Matrix Exponentials
General Dynamics

• For a location \(l \in L \) suppose we have a Lyapunov-like function \(V_l: \mathbb{R}^4 \rightarrow \mathbb{R} \) with

 – *(stable)* \(\exists \lambda_l < 0 \) and \(B_l > 0 \) such that for any trajectory \(\tau \) in \(l \in L \), \(V_l(\tau(t)) \leq B_l \; e^{\lambda_l t} V_l(\tau(0)) \)

 OR

 – *(unstable)* \(\exists \lambda_l > 0 \) and \(B_l > 0 \) such that for any trajectory \(\tau \) in \(l \in L \), \(V_l(\tau(t)) \leq B_l \; e^{\lambda_l t} V_l(\tau(0)) \)

• We can over-approximate \(T^+_A \) hybrid step relation if we know bounds on dwell time
Lyapunov Abstraction

- $\mathcal{V} = \{V_{l,i}\}_{i=1}^{k}$: Collection of k Lyapunov functions for location l

- Abstraction: $\beta: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
 - $\beta_{\mathcal{V}}(x) = V_{l,1}(x), ..., V_{l,k}(x)$ where $x.loc = l$

- Abstraction of HSR
 - $\beta_{\mathcal{V}}(\Gamma) = \{(y, y') | \exists x, x': \beta(y) = x \land \beta(x') = y'\}$

- **Theorem:** If $\beta_{\mathcal{V}}(\Gamma)$ is well-founded then so is Γ.

- Next: Steps, Loops, and Gamma (Γ)
Example: Time Triggered Linear HA

- Clock \(c \) constrains dwell time at each location
 - Unstable: upper bound
 - Stable: lower bound
- Guards overapproximated by level sets of \(V_{i,l} \)
- \(\mu_{i,l,m} \): Bound on growth of \(V_{i,l}(x) \leq \mu_{i,l,m} V_{i,m}(x') \)
- \((y, y') \in \beta \iff \exists y''\) such that
 - \(y'' \leq B_i e^{\lambda_l D} y_i \) where \(D \): lower bound
 - \(G_{i,\min} \leq y'' \leq G_{i,\max} \)
- \(y_i \leq \mu_{i,l,m} y'' \leq \mu_{i,l,m} B_i e^{\lambda_l D} y_i \)
- \(y_i \leq \frac{y_i}{K} \land y_i \geq c_i \)

\[
\begin{align*}
\dot{x} &= A_1 x \\
\dot{c} &= 1 \\
c &\leq 5 \\
\end{align*}
\[
\begin{align*}
\dot{x} &= A_2 x \\
\dot{c} &= 1 \\
c &\leq 16 \\
\end{align*}
\[
\begin{align*}
\dot{x} &= A_3 x \\
\dot{c} &= 1 \\
c &\leq 10 \\
\end{align*}
\]

\[
A_1 = \begin{bmatrix} -1 & 0 \\ 5 & -3 \end{bmatrix} \quad A_2 = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \quad A_3 = \begin{bmatrix} -4 & -2 \\ 0 & -9 \end{bmatrix}
\]
Using Disjoint Union of Well-founded Relations

- For every loop O, find a well-founded relation R_i containing T_O
- For Rectangular HA and TTLHA we can compute (approximate) T_O
- Well-foundedness of T_O can be checked using linear functions over x, x', y, y' e.g. using Rankfinder
- But there may be infinitely many loops to consider
- We will abstract each T_O with an abstract transition relation
Abstracting Loop HSRs with Transition Predicates

- Given $\mathcal{P} = \{P_1, \ldots, P_m\}$ a collection of transition predicates, i.e., each $P_i \subseteq Q \times Q$
- $\text{abs}_\mathcal{P}(T_0) \supseteq T_0$ is the smallest superset of T_0 constructed by intersecting P_i's
- **Observe.** If \mathcal{P} is finite, $\text{abs}_\mathcal{P}$ has finite range; even with infinitely many loops there are a finite number of $\text{abs}_\mathcal{P}(T_0)$’s to check

- **Theorem 3.** S inevitable for A if there exist (1) predicates $\mathcal{P} = \{P_1, \ldots, P_m\}$ and (2) well-formed relations $\mathcal{R} = \{R_1, \ldots, R_n\}$ such that for every loop O of A $\text{s} = \text{abs}_\mathcal{P}(T_0) \cap \mathcal{R}$
Abstraction-Refinement Algorithm

\[T_o : \text{Transition relation for loop } o \]
\[\mathcal{P} = \{P_1, \ldots, P_m\} \text{ transition predicates} \]
\[\mathcal{R} = \{R_1, \ldots, R_n\} \text{ well-founded relation} \]
\[F(o, R) : \text{Relation obtained by composing } T_o \text{ with } R \]

- Initialize \(\mathcal{R} \) and \(\mathcal{P} \)

 If \(\forall \text{ loop } O, abs_\mathcal{P}(T_o) \subseteq R_i \)
 - No infinite execution in A/S
 - S is inevitable
 - Refine Abstraction \(\mathcal{P} = \mathcal{P} \cup F(o, R) \)

 Otherwise
 - \(\exists R_i \in \mathcal{R}, T_o \subseteq R_i \)
 - \(\exists R \notin \mathcal{R}, T_o \subseteq R \)
 - Add New Well-founded Relation \(\mathcal{R} = \mathcal{R} \cup R \)

 No

- O is an infinite execution for A/S
 - S is not inevitable
Bringing it all together

- Inevitability of HA A to set S
- Prove well-foundedness of $T_{A/S}$
- Prove well-foundedness of abstract loop transition relations $absp(T_o)$ that constitute $T_{A/S}$
- Completeness
 - For rectangular initialized HA, guaranteed to terminate
 - Linear TTHA symmetric with respect to the k Lyapunov functions: if $x \in T_L x'$, then for all $q \in \text{Abs}^{-1} \nu(x)$ there exists $q' \in \text{Abs}^{-1} \nu(x')$ such that $q T_A q'$

| Problem $(n, |L|)$ | Unstable locations | Time (sec) |
|-------------------|--------------------|------------|
| (2,5) | 2 | 0.01 |
| (2,10) | 3 | 0.14 |
| (2,20) | 5 | 1.88 |
| (2,40) | 8 | 88.94 |
| (2,50) | 9 | 392.85 |
| (3,20) | 5 | 2.02 |
| (3,40) | 8 | 38.11 |
| (4,20) | 5 | 100.49 |
| (4,40) | 8 | 110.34 |

$V_1(q) = 1 \quad V_2(q) = 3$
$V_1(q') = 2 \quad V_2(q) = 5$
$\langle (1,3), (2,5) \rangle \in T_L$
Ongoing and future directions

- What additional (robustness) assumption are needed for completeness of inevitability verification?
- Nonlinear Ranking Functions
- Invariant generation + Ranking
- Extension to networked and distributed hybrid systems
Questions?

Acknowledgment

• The presented research is funded by
 – National Science Foundation
 – John Deere Co.