PROBLEM 2.9

A telephone cable is clamped at A to the pole AB. Knowing that the tension in the right-hand portion of the cable is $T_2 = 1000 \text{ lb}$, determine by trigonometry (a) the required tension T_1 in the left-hand portion if the resultant R of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of R.

PROBLEM 2.18

For the hook support of Prob. 2.10, knowing that $P = 75 \text{ N}$ and $\alpha = 50^\circ$, determine by trigonometry the magnitude and direction of the resultant of the two forces applied to the support.

PROBLEM 2.10 Two forces are applied as shown to a hook support. Knowing that the magnitude of P is 35 N, determine by trigonometry (a) the required angle α if the resultant R of the two forces applied to the support is to be horizontal, (b) the corresponding magnitude of R.

PROBLEM 2.34

Determine the resultant of the three forces of Problem 2.24.

PROBLEM 2.24 Determine the x and y components of each of the forces shown.
PROBLEM 2.46

Knowing that $\alpha = 55^\circ$ and that boom AC exerts on pin C a force directed along line AC, determine (a) the magnitude of that force, (b) the tension in cable BC.

PROBLEM 2.57

Two cables tied together at C are loaded as shown. Knowing that the maximum allowable tension in each cable is 800 N, determine (a) the magnitude of the largest force P that can be applied at C, (b) the corresponding value of α.