PROBLEM 9.38

The polar moments of inertia of the shaded area with respect to Points A, B, and D are, respectively, \(J_A = 2880 \text{ in}^4 \), \(J_B = 6720 \text{ in}^4 \), and \(J_D = 4560 \text{ in}^4 \). Determine the shaded area, its centroidal moment of inertia \(\bar{J}_c \), and the distance \(d \) from C to D.

PROBLEM 9.50

Two L6 × 4 × \(\frac{1}{2} \)-in. angles are welded together to form the section shown. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal \(x \) and \(y \) axes.

PROBLEM 9.75

Using the parallel-axis theorem, determine the product of inertia of the area shown with respect to the centroidal \(x \) and \(y \) axes.

PROBLEM 9.82

Determine the moments of inertia and the product of inertia of the area of Problem 9.75 with respect to new centroidal axes obtained by rotating the \(x \) and \(y \) axes 45° clockwise.