PROBLEM 2.70

An 1800-N load \(Q \) is applied to the pulley \(C \), which can roll on the cable \(ACB \). The pulley is held in the position shown by a second cable \(CAD \), which passes over the pulley \(A \) and supports a load \(P \). Determine \(a \) the tension in cable \(ACB \), \(b \) the magnitude of load \(P \).

SOLUTION

Free-Body Diagram: Pulley \(C \)

\[\begin{align*}
\Sigma F_x &= 0: \quad T_{ACB} (\cos 25^\circ - \cos 55^\circ) - P \cos 55^\circ = 0 \\
\text{or} \quad P &= 0.58010 T_{ACB} \quad (1) \\
\Sigma F_y &= 0: \quad T_{ACB} (\sin 25^\circ + \sin 55^\circ) + P \sin 55^\circ - 1800 \text{ N} = 0 \\
\text{or} \quad 1.24177 T_{ACB} + 0.81915 P &= 1800 \text{ N} \quad (2)
\end{align*} \]

\(a \) Substitute Equation (1) into Equation (2):

\[1.24177 T_{ACB} + 0.81915 (0.58010 T_{ACB}) = 1800 \text{ N} \]

Hence:

\[T_{ACB} = 1048.37 \text{ N} \]

\[T_{ACB} = 1048 \text{ N} \blacktriangleleft \]

\(b \) Using (1), \(P = 0.58010 (1048.37 \text{ N}) = 608.16 \text{ N} \)

\[P = 608 \text{ N} \blacktriangleleft \]
PROBLEM 2.75

Cable AB is 65 ft long, and the tension in that cable is 3900 lb. Determine (a) the x, y, and z components of the force exerted by the cable on the anchor B, (b) the angles θ_x, θ_y, and θ_z defining the direction of that force.

SOLUTION

From triangle AOB:

$$\cos \theta_y = \frac{56 \text{ ft}}{65 \text{ ft}} = 0.86154$$

$$\theta_y = 30.51^\circ$$

$$F_x = -F \sin \theta_y \cos 20^\circ$$

$$= -(3900 \text{ lb}) \sin 30.51^\circ \cos 20^\circ$$

$$F_x = -1861 \text{ lb}$$

$$F_y = +F \cos \theta_y = (3900 \text{ lb})(0.86154)$$

$$F_y = +3360 \text{ lb}$$

$$F_z = +(3900 \text{ lb}) \sin 30.51^\circ \sin 20^\circ$$

$$F_z = +677 \text{ lb}$$

(b)$$\cos \theta_x = \frac{F_z}{F} = \frac{677 \text{ lb}}{3900 \text{ lb}} = 0.1736$$

$$\theta_z = 80.0^\circ$$

From above:

$$\theta_y = 30.51^\circ$$

$$\theta_z = 30.5^\circ$$

$$\cos \theta_z = \frac{F_z}{F} = \frac{677 \text{ lb}}{3900 \text{ lb}} = 0.1736$$

$$\theta_z = 80.0^\circ$$
PROBLEM 2.90

For the frame and cable of Problem 2.89, determine the components of the force exerted by the cable on the support at \(E \).

PROBLEM 2.89 A frame \(ABC \) is supported in part by cable \(DBE \) that passes through a frictionless ring at \(B \). Knowing that the tension in the cable is 385 N, determine the components of the force exerted by the cable on the support at \(D \).

SOLUTION

\[
\overrightarrow{EB} = (270 \text{ mm})\hat{i} - (400 \text{ mm})\hat{j} + (600 \text{ mm})\hat{k}
\]

\[
EB = \sqrt{(270 \text{ mm})^2 + (400 \text{ mm})^2 + (600 \text{ mm})^2} = 770 \text{ mm}
\]

\[
\mathbf{F} = F_k\overrightarrow{EB}
\]

\[
= F \frac{EB}{EB}
\]

\[
= \frac{385 \text{ N}}{770 \text{ mm}}[(270 \text{ mm})\hat{i} - (400 \text{ mm})\hat{j} + (600 \text{ mm})\hat{k}]
\]

\[
\mathbf{F} = (135 \text{ N})\hat{i} - (200 \text{ N})\hat{j} + (300 \text{ N})\hat{k}
\]

\[
F_x = +135.0 \text{ N}, \quad F_y = -200 \text{ N}, \quad F_z = +300 \text{ N}
\]