PROBLEM 3.79

If $P = 20$ lb, replace the three couples with a single equivalent couple, specifying its magnitude and the direction of its axis.

SOLUTION

From the solution to Problem 3.78:

16-lb force: $M_1 = -(480 \text{ lb \cdot in.})k$

40-lb force: $M_2 = 8\sqrt{5}[(10 \text{ lb \cdot in.})i + (30 \text{ lb \cdot in.})j + (15 \text{ lb \cdot in.})k]$

$P = 20$ lb $M_3 = r_c \times P$

$= (30 \text{ in.})i \times (20 \text{ lb})k$

$= (600 \text{ lb \cdot in.})j$

$M = M_1 + M_2 + M_3$

$= -(480)k + 8\sqrt{5}(10i + 30j + 15k) + 600j$

$= (178.885 \text{ lb \cdot in.})i + (1136.66 \text{ lb \cdot in.})j - (211.67 \text{ lb \cdot in.})k$

$M = \sqrt{(178.885)^2 + (1136.66)^2 + (211.67)^2}$

$= 1169.96 \text{ lb \cdot in.}$

$M = 1170 \text{ lb \cdot in.}$

$\lambda_{axis} = \frac{M}{M} = 0.152898i + 0.97154j - 0.180921k$

$\cos \theta_x = 0.152898$

$\cos \theta_y = 0.97154$

$\cos \theta_z = -0.180921$

$\theta_x = 81.2^\circ$, $\theta_y = 13.70^\circ$, $\theta_z = 100.4^\circ$
PROBLEM 3.87

Three control rods attached to a lever \(ABC \) exert on it the forces shown. (a) Replace the three forces with an equivalent force-couple system at \(B \). (b) Determine the single force that is equivalent to the force-couple system obtained in part a, and specify its point of application on the lever.

SOLUTION

(a) First note that the two 90-N forces form a couple. Then

\[F = 216 \text{ N} \angle \theta \]

where

\[\theta = 180^\circ - (60^\circ + 55^\circ) = 65^\circ \]

and

\[M = \Sigma M_B \]

\[= (0.450 \text{ m})(216 \text{ N})\cos55^\circ - (1.050 \text{ m})(90 \text{ N})\cos20^\circ \]

\[= -33.049 \text{ N} \cdot \text{m} \]

The equivalent force-couple system at \(B \) is

\[F = 216 \text{ N} \angle 65.0^\circ; \quad M = 33.0 \text{ N} \cdot \text{m} \]

(b) The single equivalent force \(F' \) is equal to \(F \). Further, since the sense of \(M \) is clockwise, \(F' \) must be applied between \(A \) and \(B \). For equivalence,

\[\Sigma M_B: \quad M = aF' \cos55^\circ \]

where \(a \) is the distance from \(B \) to the point of application of \(F' \). Then

\[-33.049 \text{ N} \cdot \text{m} = -a(216 \text{ N})\cos55^\circ \]

\[a = 0.26676 \text{ m} \]

or

\[F' = 216 \text{ N} \angle 65.0^\circ \text{ applied to the lever 267 mm to the left of } B \]
PROBLEM 3.93

An antenna is guyed by three cables as shown. Knowing that the tension in cable AB is 288 lb, replace the force exerted at A by cable AB with an equivalent force-couple system at the center O of the base of the antenna.

SOLUTION

We have

$$d_{AB} = \sqrt{(-64)^2 + (-128)^2 + (16)^2} = 144 \text{ ft}$$

Then

$$\mathbf{T}_{AB} = \frac{288 \text{ lb}}{144} (-64\mathbf{i} - 128\mathbf{j} + 16\mathbf{k})$$

$$= (32 \text{ lb})(-4\mathbf{i} - 8\mathbf{j} + \mathbf{k})$$

Now

$$\mathbf{M} = \mathbf{r}_{A/O} \times \mathbf{T}_{AB}$$

$$= 128\mathbf{j} \times 32(-4\mathbf{i} - 8\mathbf{j} + \mathbf{k})$$

$$= (4096 \text{ lb} \cdot \text{ft})\mathbf{i} + (16,384 \text{ lb} \cdot \text{ft})\mathbf{k}$$

The equivalent force-couple system at O is

$$\mathbf{F}' = -(128.0 \text{ lb})\mathbf{i} - (256 \text{ lb})\mathbf{j} + (32.0 \text{ lb})\mathbf{k}$$

$$\mathbf{M} = (4.10 \text{ kip} \cdot \text{ft})\mathbf{i} + (16.38 \text{ kip} \cdot \text{ft})\mathbf{k}$$