Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing

4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 broadcast and multicast routing
Intra-AS Routing

- also known as \textit{interior gateway protocols (IGP)}
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
 - distance metric: # hops (max = 15 hops), each link has cost 1
 - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

from router A to destination subnets:

<table>
<thead>
<tr>
<th>subnet</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
RIP: example

routing table in router D

<table>
<thead>
<tr>
<th>destination subnet</th>
<th>next router</th>
<th># hops to dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
RIP: example

A-to-D advertisement

dest next hops
--- --- ----
w - 1
x - 1
z C 4
....

routing table in router D

destination subnet next router # hops to dest
--- ---- ----
w A 2
y B 2
z C 4
x -- 1
....

Network Layer 4-5
RIP: link failure, recovery

If no advertisement heard after 180 sec -->
neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- *poison reverse* used to prevent ping-pong loops (infinite distance = 16 hops)
RIP table processing

- RIP routing tables managed by *application-level* process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated
OSPF (Open Shortest Path First)

- “open”: publicly available
- uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra’s algorithm
- OSPF advertisement carries one entry per neighbor
- advertisements flooded to *entire* AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP)
- *IS-IS routing* protocol: nearly identical to OSPF
OSPF “advanced” features (not in RIP)

- **security**: all OSPF messages authenticated (to prevent malicious intrusion)
- **multiple same-cost paths** allowed (only one path in RIP)
- for each link, **multiple cost metrics** for different TOS (e.g., satellite link cost set “low” for best effort ToS; high for real time ToS)
- integrated uni- and **multicast** support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- **hierarchical** OSPF in large domains.
Hierarchical OSPF

Network Layer 4-10
Hierarchical OSPF

- **two-level hierarchy**: local area, backbone.
 - link-state advertisements only in area
 - each node has detailed area topology; only know direction (shortest path) to nets in other areas.
- **area border routers**: “summarize” distances to nets in own area, advertise to other Area Border routers.
- **backbone routers**: run OSPF routing limited to backbone.
- **boundary routers**: connect to other AS’s.
Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): *the de facto* inter-domain routing protocol
 - “glue that holds the Internet together”
- BGP provides each AS a means to:
 - **eBGP**: obtain subnet reachability information from neighboring ASs.
 - **iBGP**: propagate reachability information to all AS-internal routers.
 - determine “good” routes to other networks based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: “I am here”
BGP basics

- **BGP session**: two BGP routers ("peers") exchange BGP messages:
 - advertising *paths* to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections

- **when AS3 advertises a prefix to AS1**:
 - AS3 *promises* it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement
BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP to distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.
Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = “route”

- two important attributes:
 - **AS-PATH**: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - **NEXT-HOP**: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)

- gateway router receiving route advertisement uses **import policy** to accept/decline
 - e.g., never route through AS x
 - *policy-based* routing
BGP route selection

- router may learn about more than 1 route to destination AS, selects route based on:
 1. local preference value attribute: policy decision
 2. shortest AS-PATH
 3. closest NEXT-HOP router: hot potato routing
 4. additional criteria
BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - **OPEN**: opens TCP connection to peer and authenticates sender
 - **UPDATE**: advertises new path (or withdraws old)
 - **KEEPALIVE**: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - **NOTIFICATION**: reports errors in previous msg; also used to close connection
A, B, C are **provider networks**

X, W, Y are customer (of provider networks)

X is **dual-homed**: attached to two networks
- X does not want to route from B via X to C
- .. so X will not advertise to B a route to C
BGP routing policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers
 - B wants to force C to route to w via A
 - B wants to route *only* to/from its customers!
Why different Intra-, Inter-AS routing?

policy:
- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

scale:
- hierarchical routing saves table size, reduced update traffic

performance:
- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance
Chapter 4: done!

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 ▪ datagram format, IPv4 addressing, ICMP, IPv6
4.5 routing algorithms
 ▪ link state, distance vector, hierarchical routing
4.6 routing in the Internet
 ▪ RIP, OSPF, BGP
4.7 broadcast and multicast routing

❖ understand principles behind network layer services:
 ▪ network layer service models, forwarding versus routing
 how a router works, routing (path selection), broadcast, multicast

❖ instantiation, implementation in the Internet